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DETERMINATION OF ORBIT OF A SPACECRAFT WITH RESPECT TO 

AN OBJECT IN A KNOWN CIRCULAR ORBIT 

By Robert Scott Dunning 
Langley Research Center 

SUMMARY 

A set of second-order differential equations of motion for  a body in a planetocentric 
orbit has been derived and solved with the use of a cylindrical "shell" coordinate system 
which describes the motion of an orbital vehicle as observed from another body in a 
known circular orbit about the planet. The solutions have been investigated for the spe- 
cific case of a body in orbit about the moon. The results of the study indicate improve- 
ment in accuracy over first-order theory with no serious adverse sensitivity to initial 
conditions and with applicability over a wide range of flight conditions. Orbit prediction 
is accurate over relatively long trajectories with large spatial separation of the vehicles. 
Some parts  of the study are applicable to a manual apogee and perigee prediction scheme. 

INTRODUCTION 

In this paper, solutions are presented to a set  of equations which describe the 
motion of a space vehicle in orbit about a planetary body as this motion would appear if 
seen from another space vehicle in orbit about the same planetary body. Thus, this 
report is concerned primarily with the analysis of the motion of a body in a moving rela-  
tive coordinate system. 

The method differs from the second-order method, which has been used success- 
fully in references 1 and 2, in that the coordinate system is chosen in such a manner as 
to  eliminate or render negligible coupling between the various directions of translational 
motion in the mathematical treatment. 
system of reference 3 where, however, only first-order t e rms  were considered. In this 
study, a cylindrical shell system has been adopted in preference to the spherical shell 
system of the latter reference. 
motion of one vehicle as viewed from the frame of reference of the other vehicle by means 
of a set of second-order differential equations of motion. By making use of an exact first 
integral of one of the equations, solutions can be obtained that are accurate to second 
order. A simple perigee prediction method is also suggested which may be suitable for 
manual solution. 

The coordinate system used is similar to the shell 

The method of attack is to examine the equations of 
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A specific application of this analysis is the problem of trajectory prediction for a 
vehicle which is launched from a lunar orbit in an attempt to land on the lunar surface. 
The numerical computations a r e  based on a circular orbit 200 kilometers above the lunar 
surface. The mathematical development is, however, thought to b e  quite general and, 
hence, is thought to be applicable to orbits about any spherical, gravitational body. 

SYMBOLS 

A integration constant for equation (17) defined in equation (20) 

a constant of integration which describes amplitude of departure from reference 
circular orbit 

C constant of integration determined by initial conditions, defined in equation (20) 

B,C,D,E, F constants determined by initial conditions defined in equation (20) 

H 

i,j,k 

K 

L 

M 

m 

r 

rm 

rS 

t 

total energy of landing vehicle 

orthogonal coordinates 

constant, - - 
wr S 

Lagrangian, potential energy subtracted from kinetic energy 

translation substitution used to solve equation (A30) and defined in 
equation (A36) 

mass  of landing vehicle 

distance from center of planet to orbital vehicle 

radius of attracting body 

distance from center of attracting body to reference orbit 

time 
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q P , X  

A 

E 

9 

7 

W 

dummy variable, a cos E 

substitution variable used to solve equation (A30) 

nondimensional coordinates of shell coordinate system centered on a body 
moving in a circular orbit about an attracting planet or satellite 

dimensional coordinates of shell coordinate system centered on a body moving 
in  a circular orbit about an attracting planet or  satellite (see fig. 1) 

functions of initial velocity component in x-direction defined in equation (20) 

function of a power expansion in p defined in equation (20) 

arbitrary constant of integration which describes epoch angle with respect 
to reference circular orbit 

angular coordinate in a cylindrical system with origin at center of attracting 
body and lying in plane of reference circular orbit, measured from positive 
x -dir ection clockwise 

constant functions of initial out-of -plane velocity defined in equation (20) 

gravitational constant 

function of a!, 0, and X defined in equation (20), hence a function of initial 
velocity in x-direction only 

nondimensionalized or scaled time, ut  

ejection angle (see fig. 1) 

function of a power expansion in p defined in equation (20) 

angular velocity 

directional angular velocity 
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Subscripts: 

max maximum 

0 initial conditions 

P perigee 

Dots over symbols denote differentiation with respect to time or scaled time 
depending upon the section of the report in which they appear. Pr imes  refer to first- 
order solution quantities. For constants, any consistent set  of units may be used. In 
this paper the following values, which apply to the moon, were chosen: 

= 1736.5 kilometers rm 

rs = rm + 200 = 1936.5 kilometers 

p =  4.8936 X 10l2 meter3/second 2 

w = 0.00082086 radians/second 

COORDINATES AND EQUATIONS O F  MOTION 

Two assumptions a re  made about the physical nature of the problem: 

(1) The attracting planetary mass  is a gravitational sphere. 

(2) The body upon which the coordinate system is centered is in a circular orbit. 

The coordinate system employed in this development is shown in figure 1 where 
r is the projection of a line connecting the center of the planet to the orbital vehicle upon 
the plane of the reference vehicle, z is a normal to this plane passing through the 
orbital vehicle, y is measured along r from the reference vehicle altitude to the pro- 
jection of the maneuvering vehicle with the positive direction upward, and x is measured 
in a curved a rc  backward along the flight path of the reference vehicle in the plane of the 
reference vehicle orbit to r. The coordinate system rotates about the origin with angu- 
lar velocity w. 
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Direction of 
orbita I mot ion 

Reference vehicle 

u 

vehicle 

Figure 1.- Coordinates employed in describing the motions of the vehicles. 
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This motion may be determined from the equation for  the total energy and this 
method leads to an exact solution. However, this approach yields time as a function 
of y transcendentally and thus is not thought to be desirable since time normally is the 
available independent variable. 

The derivation of the equations of relative motion is given in detail in appendix A; 
therefore, only the more pertinent results are reviewed in this section. 

The equations of motion can be derived through the use of the Lagrangian which, for  
cylindrical coordinates, is 

Equation (1) is converted to shell coordinates (see appendix B) by means of the following 
substitutions: 

y + r s = r  

x = r  e 
S 

z = z  

and use is made of the exact orbital expression for the angular velocity 

to express the equations in the cylindrical shell system. Since the x-coordinate is cyclic, 
a first integral to its differential equation of motion is found immediately. The resulting 
differential equations of motion are 
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2 
OrS 

By solving equation (2) for 1 - -, 

it becomes possible to substitute the 
solution into equation (3) and hence 
remove all t e rms  in x from the 
latter. Then, equation (3) is coupled 
to equation (4) only through the 

178.1~ io3 

178.8 - 

179.2- 

Yp, max 

179.6 - 

z-term. It is, however, found from 
experience that in orbits which are 
economically feasible, z is much 
smaller than y. Hence, there wi l l  
be only a small amount of e r r o r  in 

equation (3) if the te rm ia)" is 

assumed to be negligible even 
though this te rm is, strictly 
speaking, a second-order te rm in 
the mathematical sense. A spe- 
cific example of this relationship 
can be seen in figure 2 which shows 
the ratio of maximum z amplitude 
to maximum y amplitude for a 
typical lunar synchronous orbit over 
a range of economically feasible 
initial z velocity values. It is also 
found expedient to expand t e rms  of 

zo, m/sec 

178Ax IO3 

I 

178.8 - 

Yp,max 179.*- 

179.6 - 

1- 
. I  2 3 4 5 .6 0 

when they occur 1 
n the form Figure 2.- Effect of maximum i excursions o n  perigee altitude tor 

synchronous orbits using exact equations. 

If the assumptions indicated a r e  made, the equations which are to  be solved a r e  

2 - K +%-(K-1)=3Ky 
OrS rs r,2 

.. 
+ - =  z 3 y z  

2 2 w rs I s  rs 

(5) 

(7) 
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where go, $o, and io are arbitrary initial velocities and where 

and 

$=3K2-2 

2 X = - 6 K  + 3  

In order  to get an intuitive feel for  the values of these constants, it is pointed out that 

ors is the speed of the orbiting vehicle and hence that - x~ is never likely in a prac- 
W r S  

tical case to approach unity. In fact, for purposes of this report, it is assumed that io 

is around 150 m/sec or  l e s s  for  the moon. Under these circumstances - 'O will be 

less than 0.1. Thus, for a rough approximation as to order of magnitude, K is on the 
order of -1, a? is approximately unity, p2 is very small  but can be either positive 
or negative, and X will be on the order of -3. 

wrS 

The initial conditions assigned are those at the time of ejection when t = 0, . .  
x = y = z = 0, and x = xo, $ = io, 2 = io for all the cases  studied in this report. 
Equation (6) is cast  in the form of a one-dimensional anharmonic oscillator and hence 
can be solved with y as a time-dependent variable (ref. 4 and eq. (A31)). The solution 
of the equation of a one-dimensional anharmonic oscillator however is an elliptic integral 
and since this solution would prove difficult to incorporate in the solution of equations (5) 
and (7), a perturbation solution is accepted. This solution is then used in a similar man- 
ner to obtain an integral of equation (5) and, along with a first-order solution for equa- 
tion (7), can also be used to provide a second-order perturbation solution for equation (7). 
Hence, equations (5), (6), and (7) can be solved. A complete treatment of the solution of 
these equations is given in  appendix A. 

The following solutions are to first order, where primes have been used to distin- 
guish the integration constants from those which will  occur in second-order theory 
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and where the integration constants a' and E are given by 

-1 E '  = cos 
+2 

JP4 + 

Is 

Equations (11) and (12) must be used with a sign selection scheme. In order to do so, 
equation (9) can be expressed in a deterministic form without the epoch angle as 

5 2 
Y - = - P c o s a u t + -  '0 sin aut + 
rs 2 S 

Comparison of equations (13) and (9) gives 

a' cos E ' = - 2 
012 

Hence, 

awr 
t a n € ' =  - -2 

2 
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Since a! is a frequency, which is a physical quantity, a negative a! has no meaning. 
Hence, with a! positive, the quadrant for E ' is determined by the respective signs in 
the numerator and denominator. Also p2 is strictly a function of k,, and always has 

v 

the opposite sign, p2 = ' O  << 2. It then follows, once the quadrant 

fo r  E is known, that equations (14) and (15) give the sign for a' to be selected. It is 
found that a' is always positive. These characterist ics for  all possible ejection quad- 
rants are given in table I. 

Solutions to the same differential equations but carr ied out to second order  are 

x = rs A + Bwt + C sin(pwt + E )  + D sin 2(pwt + E )  + E sin 3(pot + E )  + F sin 4(pwt + E )  L- 1 

cos(pwt + E )  - - Aa2 [1 - ;cos 2(pwt + 
2P2 

{s sin w t  + sin w t  - cosbwt + E )  + * cos 2(pwt + E )  + - p 4 4 !I z = r  
S w r s  

- cos wt  E sin (pwt + E )  + IIA sin 2(pwt + E )  + [2p* 4P 2 

where the constant t e rms  are given by 

ir 

a2 = 3K2 - 2 

p 2 = K 2 - 1  

2 A=-6K + 3  

1/4 1/4 
p = (4Ap2 + a4) = (-15K4 + 24K2 - 8 )  

(Equation continued on next page) 

10 



A = -(C sin E + D sin 2~ + E sin 3~ + F sin 4 ~ )  

2a 3 a ( 2  - p2) 5 ~ a 3  
C =  -K[.+ XP +-I 2P3 

F=- m2a4 
96p5 

A = l + p  2 4  + p  

Q = l + - + -  P2 P4 
4 16 

77A 
P 2P 

c = - EL sin E - - sin 2E 

The determination of the integration constants, a and E, is somewhat more 
involved under second-order theory because of the necessity of solving a set of simul- 
taneous transcendental equations. 
with the same end conditions as previously applied (namely, at t = 0, 
x = x 

Taking the y-equation and its first time derivative 
x = 0, y = 0, . .  

and $ = iC) and making the substitution u = a cos  E yields the quartic equation 0’ 
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It is necessary to solve this equation numerically. Of the four possible values 
of u which satisfy this equation, only one will apply; this value is the value which 
approximates the expected amplitude of the y-expression. The computations made for 
this report  give two imaginary roots and two real roots. The extraneous real  root was 
found to be an order  of magnitude larger than the correct  root. Hence, comparison with 

first-order theory where it is found that u' = - affords a comparatively simple 

method of separating the roots. 
( 3 012 

From equation (A58) and the definition of u, 

and 

-1 u 
a 

E = c o s  - 

It is assumed that approximately the same sign and quadrant selection scheme 
holds for the second-order integration constants as for the first-order integration con- 
stants, that is, a is always positive with the quadrant for E determined by $- This 
relationship, however, is only approximately true. Examination of equation (21) for the 

special case where u = 0 gives for - $0 

wr S 

The t e rms  on the right in  equation (24) are functions of ko only. Sketch (1) (see appen- 
dix A) shows how &, is related to Yo when u = 0. 
difference between first- and second-order theory. The sign on u along with the ejec- 
tion angle specifies the quadrant fo r  E .  This quadrant selection is summarized in 

This difference is the primary 
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table II. Since the t e rms  under the radical are all functions of ko only, the ejection 
angle is related to ko by 

The parameters p2, h, and A 2  a re  functions of ko only; thus the quadrant 
of E changes depending upon @, but no longer simply at 7r/2, 7r, 37r/2, and 27r as 
w a s  true for the first-order solutions. Figure 3 is a plot of ko as a function of @ for 
u = 0 in dimensional t e rms  which apply to the moon. The figure can be used therefore 
to  determine for the known value of io and @, the proper quadrant for E. As in first- 
order theory, a is always selected positive. 

2ox Id 

i o ,  
d s e c  

I I  

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

. . C  in third quadrant & c in second quodront 
I 
I 
I 
I 
I 

u = o  

I I  
I \ I  I I I  4t \ I  I ! I  I I t  I I I  

I 1  I I I I 
320 360 

I 
I 

I 2 0  160 200 240 280 
1 v I 

OO I 1  40 80 

Figure 3.- u = 0 as a function of io and ejection angle 0. 

PHYSICAL INTERPRETATION OF TERMS 

The physical meaning of several of the t e rms  in these solutions can be seen if the 
first-order solutions and second-order solutions a r e  compared. 

y -Equation 

The most important from the standpoint of applications is the y-equation. It will be 
best to begin by comparing equation (9) (first-order solution) with equation (18) (second- 
order solution). In first-order theory, a sinusoidal te rm is added to a constant which is 
a function of initial velocity in  the x-direction. Hence, the constant merely reflects a 
change in energy produced by ejection from the reference orbit and is a function of the 
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speeding up or  slowing down of the orbital vehicle's angular rate. Superimposed up011 
this motion is an oscillatory motion above and below the mean altitude, the maximum 
amplitudes of which are apogee and perigee. In second-order theory, the same funda- 
mental characterist ics appear. In this case, however, they are modified slightly to take 
better account of the inverse square nature of the planetary gravity field. The form is 
essentially the same as first-order theory presents, but the constant term is slightly 
modified to become the coefficient of the second term combined with the last te rm on the 
right in equation (18). In like manner, the oscillatory te rm is present although the coef- 
ficient is changed slightly. Hence, these two t e rms  represent the same type of motion as 
was present in the f i rs t -order  theory. Superimposed upon this te rm is an oscillatory 
te rm of twice the frequency of the primary te rm acting very much as a second harmonic. 
The primary effect of this te rm is to increase the apogee and to decrease the perigee. 
The function of this te rm is then to take account of the weakening of the restoring force 
as the gravity field decreases  at longer distances from the center of the planet. 

Another way of viewing this phenomenon can be seen in figure 4 which shows the 
acceleration of the lander relative to the reference orbit in t e rms  of exact f irst-order 
and second-order theory for a typical case. It can be seen that acceleration is a linear 
function of displacement over a reasonable altitude range under first-order theory. 

Second-order solution 

First-order solution 
- _ _ _ _ _  Exact solution 

a'= 0.7273 
p' = 0.0908 
A = -2.454 
9 = 60° 
%= 7 4 d s e c  
+o= 128m/sec 

.e2 x 10-3 

\ 

-3x) -240 -160 -80 0 80 I60 240 320x IO3 
Y >  m 

Figure 4.- Acceleration of the  orbital vehicle lander as a funct ion of departure distance from the 
reference orbit for a typical case. 
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Under second-order theory, the acceleration is quadratic and forms a much better 
approximation to the exact conditions. In figure 4, p2/a2 constitutes a change in mean 
equilibrium altitude and shows that, in general, the point of equilibrium is displaced, in 
this case downward. It is pointed out that this change will occur even for orbits of the 
same total energy as the reference orbit since orbits of the same period but different 
eccentricity will have a different mean altitude. Under second-order theory this mean 
displacement is defined a little more precisely by 

(not shown in fig. 4). It can be seen that under the special condition that X = 0, this 
relation reduces to p2/$ as in first-order theory. 

x-Equation 

Comparison of the x-equation (eq. (17)) with first-order theory (eq. (8)) shows that 
the first-order equation contains three main terms: a constant, a secular term, and a 
sinusoidal term. From the physics of the situation, it is clear that the phenomenon 
which was manifested as a constant mean separation in  the y-equation (eq. (18)) is a 
time-dependent linear mean drift rate in  the x-equation (eq. (17)). In general, the ejected 
vehicle would be expected to drift away over an interval of several  orbital periods due to 
its difference in energy and angular momentum. For a synchronous orbit, of course, the 
coefficient of the secular te rm would be zero; thus, this te rm controls the rate of drift. 

In other respects the form of this equation is about the same as is obtained for the 
y-equation, that is, a ser ies  of higher order  trigonometric terms.  

z-Equation 

In the z-equation, f irst-order theory predicts simple harmonic motion; so again 
there is a linear restoring force. This theory then assumes that altitude y does not 
have any appreciable effect upon the out-of-plane mode z. Although in trajectories of 
practical interest it is quite t rue that z does not have any marked effect upon y 
because the orbits are nearly coplanar, the converse of this statement is not true, and it 
is found that for orbits of moderately large eccentricity (for instance, on the order of O.l), 
y-coupling into the z-equation can be very significant relative to the total, but admittedly 
small, amplitude in  z. In fact, for the typical snychronous lunar orbit used for the 
numerical calculations in this paper, the coupled te rm in y and z amounts to one- 
third of the value of the pure z-term. Consequently, the second-order t e rms  in equa- 
tion (19) represent coupling t e rms  with y. 
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APOGEE AND PERIGEE PREDICTION 

The total orbital energy can be used in the following manner to predict apogee 
and perigee: 

Equation (5) is substituted into the orbital energy expression 

2 
H = i m k 2  + k2 + (y + rs)2(E - w) - 21.1 

2 
H = i m b 2  + k2 + (y + rs)2(E - w) - 21.1 (25) 

The out-of-plane terms, z and i, are neglected since they are small. 

Use of equation (5) yields 

where e is constant, and under the initial conditions assumed, for example, at t = 0, 
y = 0, C becomes 

- 

The extremals a r e  then found to be 

The positive value is apogee and the negative value is perigee as measured from or ,,tal 
altitude. It is felt that this relation is simple enough for a pilot to use in  a manual 
computation. 

TEST CASES 

In order to test the properties of the solutions, the exact differential equations, 
f irst-order solution equations, and second-order solution equations were programed on a 
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digital computer. The test orbital conditions were taken as those for ejection from a 
200-kilometer circular orbit about the moon. The period of the orbit is 7600 seconds. 
Two particular trajectories were studied in detail. These trajectories were a synchro- 
nous orbit and a Hohmann transfer to the vicinity of the surface. The latter trajectory 
will  henceforth be referred to  as the Hohmann case. Both trajectories had a perigee 
point 20 kilometers above the surface of the moon. Such orbits are suitable either for 
reconnaissance o r  for landing, and both orbits are of interest  for the Apollo mission. 

Synchronous Case 

The chief advantage of selecting the synchronous orbit is that since it returns  to 
its initial relative position after one revolution, the investigator is in  a position to 
interpret e r r o r s  in the trajectories in t e r m s  of the particular t e rms  in the solutions to  
which they a re  due. Trajectories were run for two separate synchronous cases: one in 
which there was no out-of-plane velocity component and one in which the initial out-of- 
plane velocity component w a s  10 meters  per second. The latter corresponds to an orbit 
plane change of 0.36O. This out-of-plane velocity w a s  used to show that coupling in the 
z-direction is very slight. In fact, it can be seen in figures 5 and 6 that there is no 
observable difference between the two figures to the accuracy of the plots. It can also be 
seen that the second-order solutions predict the time of occurrence of apogee and perigee 
much better than do the first-order solutions. 

Ejection w a s  in an upward direction so that apogee is reached at approximately one- 
quarter orbit and perigee at three-quarters orbit. Time histories showing the main 
resul ts  of this study are shown in  figures 5 and 6. Particular points of interest are: 

(1) The e r r o r  at perigee in these cases  for the second-order solution is 5 kilo- 
meters.  The second-order solution is therefore an improvement over the first-order 
solution where the e r r o r  is 20 kilometers and seems to indicate that the equations will 
indeed be useful as a prediction method for lunar landing or  reconnaissance vehicles. 

(2) The second-order y-equation is in  e r r o r  timewise at the end of one orbit by 
Since the period for  this orbit is about 6800 seconds, this e r r o r  is con- 200 seconds. 

sidered to  be relatively large. The x-equation is in e r r o r  timewise by the same amount. 
The reason for this time error is found in  the nature of the anharmonic oscillator equa- 
tion employed in solving for y. It can be shown that when the equation is restricted to  
second-order terms, the period is not a function of amplitude. If t e rms  of higher order  
had been carried, the period would be a function of amplitude and the time e r r o r  would 
be considerably smaller (ref. 4). 
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8 0 0 X  IO3 

(a) x-direction. 

Figure 5.- Time history for a 200-kilometer synchronous lunar orbit showing exact, first-order, and 
second-order solutions. 

Synchronous case Second-order solution 

i t ~  = 6.882 m/sec 
io = 147.8 m/sec 

3 0 0 ~ 1 0 ~  

------ Exact solution 
First- order solution 

200 - u Perigee, apogee 

-100- 

Time, 1, sec 

(b) y-direction. 

Figure 5.- Continued. 
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2 0 0 ~  103 
Synchronous cose I 20 = 6.882 m/sec 
io = 147.8 m/sec 
io = 10.0 m/sec 

Second-order solution 

First-order solution 
------ Exact solution 

I I 
-2000 -T 2 I 4 6 

I I I I 
8 IO 12 14 116X IO3 

Time, t, sec 

(c) z-direction. 

Figure 5.- Concluded. 

-4000 -200t 
\ Synchronous case '\ 1 

\ io = 6.882 m/sec 
$o = 147.8 m/sec 

io = 0 m/sec 

Second-order solution 

First-order solution 
- - - - -_  Exact solution 

I I ~~ I I I I I I 
2 4 6 8 IO 12 14 E X  103 

Time, t, sec 

(a) x-direction. 

Figure 6.- Time history for a 200-kilometer synchronous lunar orbit shaving exact, first-order, and 
second-order solutions with no initial out-of-plane velocity component. 
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103 

Time, t, sec 

(b) y-direction. 

Figure 6.- Concluded. 

Figure 7 is a plot of the variation of x with y for the synchronous orbit of fig- 
u re  5. 
ejecting vehicle if the out-of-plane motion is disregarded. It is to be observed that in 
spite of the time e r r o r  in both x and y, the spatial agreement between the exact and 
approximate second-order equations is very good. 

Hence, this shows the position of the ejected vehicle as it would be seen from the 

200~ 103 I 

. .  

8O0X1O3 

Figure 7.- Variation of x with y for a 200-kilometer synchronous lunar  orbit showing the  respective positions of the landing vehicle as seen 
from a vehicle in reference orbit. 
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Hohmann Case 

Figures 8, 9, and 10 show essentially the same information as figures 5, 6, and 7, 
but for the Hohmann case. First-order data have not been included in these cases. The 
agreement between exact and second-order solutions is better for the y-motion than it is 
for the synchronous orbit since the ejection velocity here is much smaller. The data 
were carried for two complete orbits in order  to show more clearly the nature of the 
e r r o r  buildup which occurs at the end of the first orbit in the x-equation, It is observed 
that the approximate solution is better over certain portions of the trajectory than over 
others and that the e r r o r  is most significant toward the end of each orbital period. This 
result has also been obtained by the authors of reference 3 for a rectangular coordinate 
system and suggests that the cause of the e r r o r  is something which is retained by both 
approaches. Figure 10 demonstrates a gradual departure from the exact solutions for 
each successive orbit because of the secular term of equation (8). 

Other Launch Angles 

In figure 11, a ser ies  of trajectories is shown for different ejection angles @ 
spaced at 20' intervals. The ejection speed is the same as for a synchronous orbit. 
None of these a re  synchronous orbits, however, because of the direction in which ejection 
takes place. 
shown. 

For the sake of clarity, only the exact and second-order solutions a re  

Figure 12 contains the same information as figure 11, but the speed is the same as 
that for a Hohmann transfer.  Because of the lower ejection velocity, these trajectories 
a re  in much better agreement than those of figure 11. 

LIMITATIONS ON APPROXIMATE SOLUTIONS 

In figure 11 no approximate solutions are presented over a range of ejection angles 
from -120' to +120°. In addition, the solutions which are presented for k l l O o  a r e  con- 
siderably in e r ror .  A fundamental assumption in solving the anharmonic oscillator equa- 
tion is that the first-order term is large in comparison with the second-order term. For 
the relatively high ejection speed considered for  these cases, the assumption is violated 
over this range of ejection angles. A similar situation is not encountered for the lower 
launch speed of figure 12. Mathematically, the reason for this difficulty is that for these 
trajectories, p2 becomes progressively small in- relation to the second-order te rm and 
then imaginary. When p2 is nearly as small as the second-order term, the solutions 
a r e  in e r ro r ,  and when p2 becomes imaginary, p is undefined and no solutions exist 
at all. 
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-200- 

0- Hohmann case - Second-order solutlon 

i,, = 6.882 m/sec 
$o = 147.8 m/sec 
&, = 10.0 m/sec 

_ _ _ _ _ -  Exact solution 

x. m -80 
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1 - 1  I . - . . . l . -  I.. 1 .. ! 
0 2 4 6 8 IO 12 14 16X103 -1,8001 

Time, t, sec 

(a) x-direction. 

Figure 8.- Time history for a 200-kilometer Hohmann transfer to near the lunar surface showing exact 
and second-order solutions. 
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Hohmann case 
io = 6.882 m/sec 
go = 147.8 m/sec 

io = 10.0 m/sec 

Second-order solution 
- - - _- -- - Exact solution 
-Perigee, apogee 

Time, 1. sec 

(b) y-direction. 

Figure 8.- Continued. 

2 0 0 ~  103 

Hohmann case Second-order solution 
& = 6.882 m/sec _ _ _ _ _ _  Exact solution 

io = 147.8 m/sec 
;o = 10.0 m/sec 

- 
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- 1  1 
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Time, 1, sec 

(c) z-direction. 

Figure 8.- Concluded. 
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200x 103 

Figure 9.- 

-2 
2 

Hohmann case Second-order solution 
io 6.882 m/sec 
;o = 147.8 m/sec 

io = 0 m/sec 

- - - - - - - Exact solution 

- ! ! ! I 1 
4 6 8 IO 12 14 16X103 

Time, 1, sec 

(a) x-direction. 

rime history for a 200-kilometer Hohmann transfer to near the lunar surface showing exact 
and second-order solutions with no initial out-of-plane velocity component. 
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Hohmann case -Second-order solution 
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Figure 9.- Concluded. 
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Figure 10.- Variation of x with y for a Hohmann transfer from 200-kilometer trajectory showing successive positions of the vehicle as Seen by an 
observer in the orbiting vehicle in the reference orbit. 

25 



280x101 Second-order solution 
------- Exact solution 

26 



200~103 Second-order solution 
Exact sold ion -- ------ 
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x ,  I-n 

Figure 12.- A series of trajectories for different ejection angles. Ejection speed is the same as for a Hohmann transfer. 
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CONCLUDING REMARKS 

Second-order solutions to the equations of relative motion for two bodies in orbit 
about a planet have been presented in  this paper. Also, since both a Hohmann transfer 
and a synchronous transfer from orbit to the letdown phase of a lunar landing maneuver 
a re  considered important with regard to current projects to explore the moon, these two 
trajectories have been studied in detail. Various other trajectories having the same 
initial speeds as these two cases  but with different initial directions of motion have also 
been investigated. As a result  of these studies, the second-order solutions have been 
found to be more accurate than the corresponding first-order solutions for the same types 
of motion. It has been established that e r r o r s  a re  small  for the Hohmann transfer, o r  
indeed for any kind of trajectory at Hohmann speed. However, for a synchronous transfer 
the e r r o r s  a re  somewhat larger.  A certain range of trajectories at synchronous speed, 
but in nonsynchronous directions, are found to give large e r r o r s  which a re  due to viola- 
tion of the conditions under which the second-order solutions are derived, and within this 
range is a second range in which no solutions are possible at all. These conditions are 
not thought to arise in any practical situation, however. It is therefore concluded that 
the second-order solutions may be used as a part of a guidance system where prediction 
of the future position of the space vehicle is required. 

In addition, a simple technique for  computing apogee and perigee altitudes is illus- 
trated for the landing vehicle transfer trajectory when the initial separation conditions 
a r e  known. Because of its simplicity, this technique may be used in manual guidance as 
well as automatic guidance. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., March 29, 1966. 
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APPENDIX A 

DERIVATION OF THE EQUATIONS OF MOTION 

Differential Equations 

The coordinate system in  this development is shown in figure 1. The Lagrangian 
is set up formally in a cylindrical coordinate system centered on the planet and then con- 
verted to shell coordinates before taking the appropriate derivatives. The Lagrangian 
in cylindrical coordinates is given by 

This equation is converted to shell coordinates by means of the following substitutions: 

1 y + r S = r  

x = rse 

z = z  

Hence, 

. .  
y = r  

j, = r s6  

. .  
z = z  

Then the Lagrangian becomes 
- 

2 
+ ( y + r , )  2 i  ( G - w )  + 21-L 

- 
It can be seen that equation (A4) is cyclic in the x-coordinate; thus a first integral 

of the equation of motion in the x-direction is found immediately. If the appropriate 
derivatives of the Lagrangian are taken and use is made of the exact orbital expression 
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,2 = I-L 
3 

rS 

the equations of motion become 

1 l + l  = K  ($- )( .,)” 

-3/2 
z+u2z[l+-$+(;f] = o  

For convenience, let 

y = l  
rS 

The resulting equations are 

K (X - 1) = 
(1 + Y)2 

-3/2 
Z + Z ~ l + Y ) 2 + Z 2 ]  = o  

where the dot over the symbols now refers to derivatives with respect to T. The 
approach taken in obtaining the solutions is the following: Since equation (Al l )  contains 
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t e rms  in X but not in X, if Z2 is assumed to be small in relation to (1 + Y)2 and 
can hence be neglected, it is possible to cast  equation (Al l )  as an equation in Y and 
by direct  substitution of equation (A10). This equation can then be solved approximately 
for Y as an explicit function of time. This solution may then be used in the solution of 
equations (A10) and (A12). 

In order to establish a value for  K, assume that at 

T =  0 (t = 0) 

I . .  x = xo 

J Y = O  

Then K =  (Xo - 1). Substituting equation (A10) into equation (Al l )  and neglecting the 
out-of-plane te rm Z results in 

Y -  K2 + 1 = o  
(1 -F Y)3 (1 + Y)2 

If the forms of 

1 
(1 + Y)n 

where n = 2 or  3 are expanded, and the te rms  of the second order  and lower a r e  
retained, equations (AlO), (All) ,  and (A12) become 

where 

K = ( X o - 1 )  7 

A =  - 6 K 2 + 3  J 
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First-Order Solutions 

The first-order solutions to equations (A15), (A16), and (A17) are obtained by 
dropping the second-order t e rms  (setting the t e r m s  on the right-hand side equal to zero). 
The Y-equation is solved by inspection. Its solution is 

p" 
2 Y = a' COS(CYT + E: ') + 

where primes are used to distinguish first-order equation integration constants from 
those of the second order. 

The X-equation becomes, upon replacing K + 1 with its equivalent by defini- 
tion Xo 

Then substituting equation (A19) into equation (A20) and integrating, the X-equation is 

A solution to the Z-equation is 

. .  
where Z = 0 at T =  0 and Z = Z o .  

To compute the integration constants from the initial conditions, set Y = 0 at . .  
T = 0 and Y = Yo. Then solve for a' and E '. This solution can be found in a 
straightforward manner; but, for purposes of making the second-order equivalent devel- 
opment more understandable, it is advisable to make the substitution 

ut = a' cos E' 

and hence 

2 
u' + E =  0 2 

Then 
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and 

-1 u' E ' =  cos - a' 

The sign selection on equations (A24) and (A25) can be done empirically. For 
instance, a' can be chosen always positive and then the quadrant for  E '  depends upon 
the launch angle 
the epoch angle as 

4. Equation (A19) can be expressed in a deterministic form without 

5 2 
Y = - cos + 5 sin a!r + 2 a! 

Expanding COS(C~T + E ') in equation (A19) yields 

E? 
2 Y = (a' cos  E ')cos - (a' sin E ')sin or + 

Comparison of equations (A26) and (A27) gives 

5 a' cos E '  = - 

Hence , 
-$op 
- P 2 P  

t a n € ' = -  

Since a! is a frequency which is a physical quantity, a negative a! has no 
meaning. Hence, with a positive, the quadrant for E ' is determined by the respective 
signs in the numerator and denominator. Also p2 is strictly a function of Xo and 
always has  the opposite sign ( P2 = X ,(X - 2), since X, << 2). It then follows, once the 
quadrant of E ' is known, that equations (A28) give the sign to be selected for a' in 
equation (A23). It is found that a' is always positive. These characterist ics for all 
possible ejection quadrants are given in  table I. 
4-quadrant for the first-order solutions. 

Table I relates the E '-quadrant and the 
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Second -Order Solutions 

Solution fo r  Y.- Equation (A16) can be expressed as 

2 2 2  Y + a Y + h Y  = p  

It is advantageous to transform equation (A30) into the form (to eliminate the constant 
term) 

(A3 1) V + p V + h V  2 2 = o  

This transformation can be accomplished by a change in  variable Y = V + M which 

results in 

V + (a2 + 2AM)V + AV2 = p2 - AM2 - $M (A321 

Comparing equations (A30) and (A31) shows that 

(A331 2 2  p 2 - A M  - c Y M = O  

and 

(A341 2 2 CY + 2 X M = p  

which can also be written as 

Solving equation (A33) for M yields 

which can also be expressed in t e rms  of p2 as 

Equation (A31) may be recognized as the equation of a one-dimensional anharmonic 
oscillator. An exact second integral of this equation may be obtained if desired; however, 
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as this solution is an elliptic integral, the results are not very useful for solving the 
X- and Z-equations. For this reason an approximate perturbation solution is sought. 
A more complete treatment than that given here using higher order te rms  can be found 
in reference 4. The solution V is obtained as the sum of a first-order solution VI 
and a second-order correction te rm V2. Let 

v = v 1 + v 2  (A381 

The first-order solution to this equation (by assuming p2 >> XV) is 

V1 = a C O S ( ~ T  + E )  

from which equation (A38) becomes 

V = a COS(PT + E )  + V2 

Applying these relations to equation (A31) gives 

2 2 2 2 2  -p a C O S ( ~ T  + E )  + I;, + p a C O S ( ~ T  + E )  + p v2 + h a  cos ( p ~  + E )  

After some cancellation and rearrangement of terms, 

(A421 2 2 2  2 V2 + p V2 = - h a  cos ( p ~  + E )  - 2haV2 C O S ( ~ T  + E )  - hV2 

Omitting te rms  of higher order  than the second (last two t e rms  on right), results in, 

2 2 2  V2 + p V2 = -Xa cos ( p ~ +  E )  
.. 

Solving the inhomogeneous linear equation in the usual way yields 

2 
Xa2 + ha COS 2(p7 + 15) v 2 = - -  2p2 6p2 
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Hence, the second-order solution for V is 

The constants 
tions. This solution 
approximately valid; 

2 

2p2 6p2 
xa V = a c o s ( p . r + c ) - -  + -COS 2 ( p T +  E )  

a and E are integration constants which depend on initial condi- 
is, of course, limited to cases  where the first-order assumption is 
that is, 

hV << p2 

or 

h(Y - M) << p2 

It can be seen f rom numerical solution that this relationship is usually the case since Y 
seldom exceeds 0.1 for  cases  which are physically practical and M will be small pro- 
vided the departure velocity is small enough. 

Converting equation (A45) to Y notation yields, 

The last te rm on the right is part of a small correction t e rm which takes account 
of the change in energy and hence the change in average altitude between the original 
circular orbit and the new orbit into which the vehicle is launched. 

Solution for X.- The second-order solution for X is obtained by substituting 
equation (A46) for Y into equation (A15) for X and then integrating. The differential 
equation is 

3 

2 Xa 

6P2 

+-COS 2 4  2 2 ( p T + E ) + -  +a+.+ 2 - ( 7 + 7 ) 2 x  xa2 2 2 + 3p2 2xa c0s3bT+ E )  
36p4 4p4 2p2 2x2 

- -  3 2 a  2a 
3P2 x 

2 a 2 2  
6P2 6 

. .  
COS(PT + E )  + - C O S  2 ( p T  + E )  - - - 

2 4  
a COS 2(pT + E )  COS(p7 f E )  - - 4xa COS(pT + E )  - - COS(p'T + E )  4- 

6P4 

1 COS 2bT + E )  + a COS 2(pT 4- E )  -- 
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Integrating equation (A47) with respect to T with A as an arbitrary constant of inte- 
gration yields 

X = A + BT + C s i n k 7  + E )  + D sin 2(p7 + E )  + E sin 3 ( p ~  + E )  + F sin 4 ( p ~  + E )  (A481 

where 

7 A = -(C s in  E + D sin 2~ + E sin 3~ + F sin 4 ~ )  

F=- n 2 a 4  
96p5 

Terms  E and F have been found to  be negligible in all cases tested, but are included 
here for  the sake of completeness. The constant A is evaluated on the usual assump- 
tion that at T = 0, X = 0. 

Solution for Z.- The solution for Z is obtained by replacing the right-hand side 
Z of equation (A17) by the first-order term for 

for Y to obtain a time-dependent right-hand side. In doing so, of course, t e rms  are 
carried which are higher than the second order of smallness. However, if only second- 
order terms are retained, new end conditions corresponding to a and E would have to  
be computed as a peripheral calculation; this calculation is thought t o  be unnecessary. 
Therefore, equation (A17) becomes 

and the appropriate second-order term 
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Let 

2 .  Xa Zo 
17 -= 

2P2 

3aZ0 = y J. 
Then 

Z + z = y cos(p7 + €)sin T + q cos 2(p7 + €)sin T + K sin 7 

The solution of this equation is 

z = Z sin T +  Ak+cos(pT+ e )  + qA cos 2(pT+ E )  + d s i n  7 
0 4 

sin(p7 + e )  + fi sin 2(p7 + E )  + pc cos 7 
2 1 

where . 
2 4  A = l + p  + p  

2 4  
4 16 

+ =  1+p+p 

I Y+ A c = - - sin E - LL sin 2~ 
P 2P 

Evaluation of the Integration Constants a and E 

In order to make effective use of equation (A46), it is necessary to compute values 
for the two integration constants a and E .  It is found from experience that when 
synchronous or very nearly snychronous orbits are  under consideration, one can obtain 
excellent results by using the values which are obtained from first-order theory. 
even moderate departures from the synchronous condition, for instance, on the order of 5' 
in launch direction, however, this is not the case, especially for e .  Therefore, it will  be 
necessary in most cases  to evaluate the integration constants. A method for  evaluating 
these constants is outlined in the following. 

For 
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Differentiating equation (A46) and applying the initial conditions yields the simul- 
taneous set of transcendental equations 

2h 

2 
0 3P 

(A561 ha  Y = -pa sin E - -sin 2~ 

where a and E are the two unknowns. These two equations can be solved by elimi- 
nating E in favor of the two variables u and a where 

u = a cos E 

After substitution and some manipulation, 

and 

Solving this set by eliminating a' gives a quartic equation in u 

2(012 - P2) + 21 = 0 (A591 ( q U 4  ++ 3 p 2 - 2  ). 2 - (5p22h -2CY2 ) U +  k p  
A2 P2 9P 3P 

In equation (A59) it can be seen that u is a function of both $, and Xo (through 
a, p, and A )  instead of just Xo as was the case under first-order theory (eq. (A23)). 
As  a result, the special case where u = 0 will no longer occur independent of Yo. It 
is seen that when u = 0, the following relation is obtained: 

or 
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This relationship is shown in sketch 1. It 
can be seen that under first-order theory, 
this curve degenerates into a straight verti- +O 

I 
cal line. u = o  

This curve forms the boundary for the 

sign on u along with the positive selection 
for a determines the sign of cos  E .  

Since the second-order term in equa- 
tion (A46) is a function of c o s 2 ( p ~  + E ) ,  the 
quadrant is not ambiguous and all four 
quadrants must be used. Table 11 summa- 
r izes  the second-order sign selection. In 

selection of the quadrant for E since the u c o  

u < o  

te rms  of ejection angle Cp, equation (A61) u = o  
becomes 

Sketch 1. 

Equation (A62) relates Cp and Xo for the condition that u = 0 or in other words, it 
specifies the combinations of $ and Xo at which E 

Figure 3 is a plot of io as a function of C#I for  u = 0. The figure can be used 
therefore to determine for the known value of io and $, the proper quadrant for E .  

changes quadrants. 

LIMITATIONS ON THE APPROXIMATE SOLUTIONS 

It will be recalled that one of the conditions implicit in solving the equation of an 
anharmonic oscillator was that p2 >> XV where V w a s  defined as V = Y - M. Hence, 
in order  for the solution to be valid, 

where Y is inherently nondimensionalized in such a way that for all practical purposes 
the term Y in the expression can be neglected. Thus, the criterion which se t s  a limit 
on the validity of the solutions in actual practice is 
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Vo, m/sec. 

,------ 
147.0 synchronous speed 

P2 12 39.3 Hohmann smed ----- -E-- - 
I- t - -  ---\-.- . 

I I I I 240 200 320 360 
40 80 I20 160 200 -4  

0 
h deg 

Figure 13.- Comparison of the magnitudes of p2  and -AM for Hohmann and synchronous speeds. 

For synchronous speed at ejection angles between 110' and 250°, equation (A64) is not 
satisfied as can be seen in figure 13. Hence, one would not reasonably expect equa- 
tion (A46) to describe the physical situation. That this is actually the case can be seen 
by looking at figure 11 for ejection angles of 110' and - l l O o  (250'). It is observed that 
for these cases  the e r r o r  is considerable. At ejection angles of slightly larger  magni- 

tude than this value, p2 becomes imaginary ( p 2  = d-014). Hence, a value for  p 
is undefined. Inspection of equation (A46) shows that p is the frequency term. There- 
fore,  no solutions would be expected to exist at all with p2 imaginary. This situation 
occurs for those cases  in figure 11 for which no solutions are shown. 
case, equation (A46) is satisfied for all ejection angles and p2 remains real;  hence, 
breakdown does not occur. 

For the Hohmann 
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CONVERSION O F  DATA FROM RECTANGULAR TO SHELL COORDINATES 

If initial measurements are taken in an x',y',z' rectangular coordinate system, 
the conversion to an x,y,z shell coordinate system can be derived as follows where all 
t e rms  are dimensional. 

X' Jy- - - -/ Y 
From sketch 2, where it is assumed, as before, 

that rs is measured toward the center of the planet, 

X' tan e = 
rfj + Y' 

X but 6 = -. Therefore, 
rS 

x = r s t a n  -1 - x' 
rs + Y' 

and from the large right triangle in the sketch 

y = + / w - r s  

where the positive sign is selected for the radical because 
same order of magnitude. 

rs and the radical a re  of the 

Equations (Bl) and (B2) serve to express spatial positions x and y in shell 
coordinates in t e rms  of x' and y' in rectangular coordinates. Of course, the out-of- 
plane measurement is trivial since 

The velocity t e rms  a r e  obtained by differentiation of equations (Bl), (B2), and (B3) 
with respect to time to get 

S 
x = r  

(rs + y f ) 2  - 

. .  
z = z  
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TABLE I.- F'IRST-ORDER QUADRANT AND SIGN SELECTION 

a' 4 quadrant 

1 
2 
3 
4 

-. . 

TABLE E.- SECOND-ORDER QUADRANT AND SIGN SELECTION 

Sign 

+ 

I 
-_ 

Quadrant for E 

E in fourth quadrant 

E in third quadrant 

E in second quadrant 

E in first quadrant 
_. 
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